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1. Objectives of the deliverable based on the Description of Action 
(DoA)  

The objectives of this deliverable are determined as follows: 

1. Refine current gene-based diseasome by constructing multi-level disease-disease networks 

(diseasome v3.5) based on the public molecular data including disease-variant associations, 

disease-symptom, drug-indication as well as the comorbidity data from health records. 

2. Build a comorbidity-based diseasome (comorbiditome), using clinical comorbidity data 

(common clinical co-appearance of two disease phenotypes) from health records. 

3. Map networks to a unified disease ontology which is required for (1) and (2). 

4. Refine the current target-based drugome by including drug-indication data. 

5. Devise graph-based methods to analyse the (dis)similarity and accordance of different 

diseasomes and drugomes. 

6. Implement the established graph-based methods in (5). 

7. Investigate the impact of disease term granularity originated from different disease ontologies 

on the results of conducted network-based analyses. 

8. Assess if the results of network medicine approaches in a broad sense are reliable when 

they are based on the data annotated with mechanistically inadequate disease definitions, 

i.e. phenotype-based disease definitions. 

 

2. Executive Summary  
 

● Methodology:   

 

A Diseasome/drugome is a network consisting of nodes, representing diseases/drugs, and 

edges, representing the relationships between diseases/drugs. The construction of 

diseasomes/drugomes is based on the bipartite networks of disease/drug-T relationships, 

where T is the associated data of different types. In the context of the REPO-TRIAL project, 

constructing multi-level diseasomes/drugomes in which the edges represent various types of 

similarity between diseases/drugs and assessing the conformity between them could provide 

further insights to pathomechanisms underlying complex diseases and repurposing 

candidates. 

For the task of network construction we used the NeDRexDB data (Sadegh et al., 2021) 

integrated from public databases such as OMIM (Amberger et al., 2019), DisGeNET (Piñero 

https://paperpile.com/c/44stgh/JfgP
https://paperpile.com/c/44stgh/JfgP
https://paperpile.com/c/44stgh/JfgP
https://paperpile.com/c/44stgh/Vigg
https://paperpile.com/c/44stgh/Vigg
https://paperpile.com/c/44stgh/Vigg
https://paperpile.com/c/44stgh/jPR9
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et al., 2020), HPO (Köhler et al., 2021), DrugBank (Wishart et al., 2018), DrugCentral (Avram 

et al., 2021), CTD (Davis et al., 2021), IID (Kotlyar et al., 2019), and UniProt (UniProt 

Consortium, 2019). Furthermore, for the construction of comorbiditome we used the health 

records of around 140K patients from the Estonian Biobank on the pairwise comorbidity of 

diseases. To continue with the analyses of the constructed networks, they all needed to be 

mapped into the same disease ID namespace. We decided to use the Monarch Disease 

Ontology (MONDO) as the primary identifier for diseases, as the mapping between MONDO 

and other identifiers (e.g., the Unified Medical Language Systems (UMLS), used by 

DisGeNET) is more complete than other disease identifiers. Since the source of comorbidity 

data (Estonian Biobank) uses ICD-10 codes, we mapped all the networks also to this 

namespace and repeated the same analyses. The disease ID mapping task was carried out 

by (1) using available mapping sources such as MONDO and OXO ontology mapping 

(https://www.ebi.ac.uk/spot/oxo/) and (2) a manual mapping effort by UHAM, UNEW and UM 

partners to check the validity of the existing mappings and adding the missing ones.  

To check the similarity between the networks both on a global and local scale, we used two 

versions of Graph Edit Distance (GED) (Bunke and Allermann, 1983; Sanfeliu and Fu, 1983) 

measure using uniform and rank-based edge editing costs. We also used shortest path 

distance to evaluate the closeness of diseases pair-wise in the integrated PPI network 

(interactome). The hypothesis was that disease pairs with some levels of similarity based on 

the genetic signature, symptoms or comorbidity, are located closer in the interactome than 

the ones without similarity. In a similar fashion, we evaluated the closeness of drugs pair-

wise in the PPI network with the hypothesis that drug pairs with some levels of similarity 

based on the target or indication, are located closer in the integrated PPI network than the 

ones without similarity. We also evaluated the closeness of drug-disease pairs in the 

interactome and the hypothesis was that the drug-disease pairs having drug-indication 

associations are located closer in the integrated interactome than the ones without such 

associations.  

 

● Results:  

Apart from the gene-based approach, four new versions of diseasomes (variant-based, 

symptom-based, drug-based, comorbidity-based) and one new drugome (indication-based) 

were constructed and further systematically compared. All the constructed drugomes and 

diseasomes including the comorbiditome are publicly available on GitHub: 

https://github.com/repotrial/graphsimqt 

The networks can be loaded in any network visualization tool such as Cytoscape and be 

explored further. 

https://paperpile.com/c/44stgh/jPR9
https://paperpile.com/c/44stgh/jPR9
https://paperpile.com/c/44stgh/jyJh
https://paperpile.com/c/44stgh/jyJh
https://paperpile.com/c/44stgh/jyJh
https://paperpile.com/c/44stgh/XHdD
https://paperpile.com/c/44stgh/XHdD
https://paperpile.com/c/44stgh/XHdD
https://paperpile.com/c/44stgh/NdI6
https://paperpile.com/c/44stgh/NdI6
https://paperpile.com/c/44stgh/NdI6
https://paperpile.com/c/44stgh/NdI6
https://paperpile.com/c/44stgh/h66V
https://paperpile.com/c/44stgh/h66V
https://paperpile.com/c/44stgh/h66V
https://paperpile.com/c/44stgh/zrZ0
https://paperpile.com/c/44stgh/zrZ0
https://paperpile.com/c/44stgh/zrZ0
https://paperpile.com/c/44stgh/A4Eq
https://paperpile.com/c/44stgh/A4Eq
https://www.ebi.ac.uk/spot/oxo/
https://paperpile.com/c/44stgh/S4As+NueG
https://github.com/repotrial/graphsimqt
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For all evaluated pairs of networks (both in MONDO and in ICD-10 namespace), we obtained 

smaller global GEDs for the original diseaseomes, drugomes, or drug-disease networks than 

for randomised counterparts, leading to empirical P-values which are significant at 0.001 

level. 

For shortest path distance analyses between disease-disease, drug-drug, and drug-

disease pairs in the PPI-included networks of disease-gene-gene-disease, drug-protein-

protein-drug, and disease-protein-protein-drug networks, we observed that shortest path 

distances are significantly shorter for node pairs that are directly connected by a link in the 

reference networks. In particular, the results show (1) that  distances between diseases that 

are connected by edges in diseasomes constructed based on comorbidities, shared drugs, 

shared symptoms, or shared genetic variants are significantly shorter than distances between 

diseases without such edges; (2) that distances of disease-drug pairs with shared indication 

edges are significantly shorter than distances of disease-drug pairs without such edges; and 

(3) that distances between drug pairs with shared indication are significantly shorter than 

distances for drug pairs without shared indications. distances between disease genes, 

disease gene & drug targets and drug targets. 

The overview of the results of the local GED analyses for different disease namespaces 

shows that the comparisons performed in ICD-10 namespace (at three-character level) led 

to more significant similarities than the ones performed in MONDO namespace. Furthermore, 

we computed local empirical P-values individually for nodes based on local GEDs. The 

fractions of significant local empirical P-values at 0.05 level show that, for a substantial 

fraction of disease nodes, local neighbourhoods of diseases are not preserved significantly 

better than expected by chance across the different diseasomes. 

In sum, our global analyses provide solid evidence for the global validity of the network 

medicine paradigm while our local analyses only provide weak evidence for the local scale 

hypothesis, indicating the network medicine tends to produce locally blurred results. 

● Distinctive features and progress beyond the state-of-the-art: 

While gene-based disease-disease similarity networks, so-called diseasomes, are not novel 

– for example, Goh et al. published such a network for the first time (Goh et al., 2007) – our 

multifaceted version of the diseasome builds on the works of other researchers in the network 

medicine field by including various types of data in addition to genetic signatures, such as 

symptoms, comorbidity, and drugs. Comorbidity and symptom data are specifically very 

important since they can potentially capture environmental and lifestyle-influenced factors into 

the play. Whereas the target-based drug-drug network, so-called drugome was first published 

by Udrescu et al. (Udrescu et al., 2020), our extended version of the drugome builds on 

previous works by integrating drug-indication data. To our knowledge, global and local 

https://paperpile.com/c/44stgh/tXKt
https://paperpile.com/c/44stgh/tXKt
https://paperpile.com/c/44stgh/tXKt
https://paperpile.com/c/44stgh/n0FM
https://paperpile.com/c/44stgh/n0FM
https://paperpile.com/c/44stgh/n0FM
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similarity analyses on the multitude of diseasomes (including comorbiditome), drugomes and 

disease-drug networks have not been done before. With our analyses, we also point out the 

caveats of using large-scale data in network medicine and propose a way forward by using 

more close-up methods where the study is focused on specific diseases and starts with 

molecular data for well-characterised patient cohorts. 

 

3. Introduction (Challenge) 

In network medicine, multi-level health data modelled as complex networks is mined to identify 

causal mechanisms of complex diseases. In other words, some network medicine approaches are 

based on the following intuitive idea: Assume that two diseases 𝑑1 and 𝑑2 share an unknown causal 

molecular mechanism. Then this joint mechanism should lead to similarities in health data associated 

with 𝑑1 and 𝑑2. And vice versa, i.e., if there are similarities in the data, the diseases share common 

mechanisms. For instance, we would expect that the diseases 𝑑1 and 𝑑2 have similar profiles of 

disease-associated genes, that they exhibit high comorbidity, that they lead to similar symptoms, 

and that they can be treated by similar drugs. To uncover the unknown mechanism, network 

medicine therefore makes the following core assumption (Goh et al., 2007): If health data associated 

with two diseases 𝑑1 and 𝑑2 are sufficiently similar, this constitutes prior evidence for the conjecture 

that 𝑑1 and 𝑑2 share a causal molecular mechanism. Based on this assumption, some network 

medicine approaches generate complex networks (so-called “diseasomes”), where nodes are 

diseases and two diseases 𝑑1 and 𝑑2 are linked by an edge if their associated health data are 

sufficiently similar. The diseasomes are then mined for densely connected regions of interest, which 

are further investigated for (joint) disease mechanisms. 

Since the pioneering articles by Goh et al. (Goh et al., 2007) and Barabási et al. (Barabási, Gulbahce 

and Loscalzo, 2011), network medicine has developed into an increasingly mature research field 

with its own dedicated journals (Baumbach and Schmidt, 2018) and associations (Maron et al., 

2020). Various studies have generated evidence for the validity of its overall approach: For instance, 

Menche et al. (Menche et al., 2015) demonstrated that disease-associated genes form so-called 

disease modules, i.e., highly connected subnetworks within protein-protein interaction (PPI) 

networks, and that biological and clinical similarity of two diseases results in significant topological 

proximity of these modules. In a similar vein, Iida et al. (Iida, Iwata and Yamanishi, 2020) showed 

that shared therapeutic targets or shared drug indications are correlated with high topological module 

proximity. Guney et al. (Guney et al., 2016) and Cheng at al. (Cheng et al., 2018) showed that the 

network-based separation between drug targets and disease modules is indicative of drug efficacy. 

Cheng et al. (Cheng, Kovács and Barabási, 2019) and Zhou et al. (Zhou et al., 2020) found that 

https://paperpile.com/c/44stgh/tXKt
https://paperpile.com/c/44stgh/tXKt
https://paperpile.com/c/44stgh/tXKt
https://paperpile.com/c/44stgh/tXKt
https://paperpile.com/c/44stgh/tXKt
https://paperpile.com/c/44stgh/tXKt
https://paperpile.com/c/44stgh/ZTUy
https://paperpile.com/c/44stgh/ZTUy
https://paperpile.com/c/44stgh/uMk4
https://paperpile.com/c/44stgh/zXXt
https://paperpile.com/c/44stgh/zXXt
https://paperpile.com/c/44stgh/zXXt
https://paperpile.com/c/44stgh/zXXt
https://paperpile.com/c/44stgh/ORVs
https://paperpile.com/c/44stgh/ORVs
https://paperpile.com/c/44stgh/ORVs
https://paperpile.com/c/44stgh/61Nb
https://paperpile.com/c/44stgh/YQjw
https://paperpile.com/c/44stgh/YQjw
https://paperpile.com/c/44stgh/YQjw
https://paperpile.com/c/44stgh/UCIV
https://paperpile.com/c/44stgh/UCIV
https://paperpile.com/c/44stgh/UCIV
https://paperpile.com/c/44stgh/W3Ci
https://paperpile.com/c/44stgh/KDWG
https://paperpile.com/c/44stgh/KDWG
https://paperpile.com/c/44stgh/KDWG
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FDA-approved drug combinations are proximal to each other and to the modules of the targeted 

diseases in the interactome. 

Although network medicine approaches have led to some new mechanistic insights into complex 

diseases (AbdulHameed et al., 2014; Samokhin et al., 2018; Wang and Loscalzo, 2018; Halu et al., 

2019), large-scale adoption in the biomedical sciences and major translational breakthroughs are 

still pending. As part of the concluding deliverable of WP1 for the REPO-TRIAL project, and in 

addition to constructing the refined diseasome and drugome, it was necessary to analyse these 

networks and investigate the reasons for this translational underperformance and propose ideas how 

to address this issue in the network medicine discipline. Here, we also investigated to which extent 

currently available data do indeed back the core assumption of network medicine.  

In order to answer this question with quantitative means, we derive the following testable hypotheses 

from the core assumption (see “Methods” for an argument that these hypotheses indeed follow from 

the core assumption): 

Global scale hypothesis: For all disease association data types 𝑇1 and 𝑇2 that contain useful 

information about diseases, diseasomes 𝐺1 and 𝐺2 constructed based on 𝑇1 and 𝑇2 are 

pairwise more similar than expected by chance. 

Local scale hypothesis: For all disease association data types 𝑇1 and 𝑇2 that contain useful 

information about disease and any disease 𝑑𝑖 appearing in the association data, the direct 

neighbourhood of 𝑑𝑖 in the diseasomes 𝐺1 and 𝐺2 constructed based on 𝑇1 and 𝑇2 are pairwise 

more similar than expected by chance. 

To test these two hypotheses, we constructed diseasomes based on (1) disease-gene associations, 

(2) disease-variant associations, (3) comorbidity data, (4) symptom data, and (5) drug-indication 

data. Moreover, we constructed drug-disease and drug-drug networks (so-called “drugomes”) based 

on drug-indication and drug-target data. We then compared all pairs of diseasomes, drugomes, and 

drug-disease networks both on a global and on a local scale, using customised versions of the graph 

edit distance (GED). We also evaluated how competing disease ontologies of different granularity 

affect the results, by carrying out the analyses using MONDO IDs (finer granularity) and ICD-10 

three-character codes (coarser granularity) as node IDs in the constructed networks, respectively. 

In line with the findings of the prior studies summarised above (Menche et al., 2015; Guney et al., 

2016; Cheng et al., 2018; Cheng, Kovács and Barabási, 2019; Iida, Iwata and Yamanishi, 2020; 

Zhou et al., 2020), our analyses provide solid evidence for the global-scale hypothesis. However, 

they only partially support the local-scale hypothesis.  

We hypothesise that one important reason for this “local blurriness” of network medicine is that the 

current symptom- and organ-based disease definitions largely do not reflect causal mechanisms 

(Nogales et al., 2022). This leads to unspecific data on all scales, because in the data used as input 

https://paperpile.com/c/44stgh/sJaU+cDlw+0jo7+6Gjf
https://paperpile.com/c/44stgh/sJaU+cDlw+0jo7+6Gjf
https://paperpile.com/c/44stgh/sJaU+cDlw+0jo7+6Gjf
https://paperpile.com/c/44stgh/sJaU+cDlw+0jo7+6Gjf
https://paperpile.com/c/44stgh/sJaU+cDlw+0jo7+6Gjf
https://paperpile.com/c/44stgh/sJaU+cDlw+0jo7+6Gjf
https://paperpile.com/c/44stgh/sJaU+cDlw+0jo7+6Gjf
https://paperpile.com/c/44stgh/sJaU+cDlw+0jo7+6Gjf
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/ORVs+61Nb+YQjw+UCIV+W3Ci+KDWG
https://paperpile.com/c/44stgh/PpIj
https://paperpile.com/c/44stgh/PpIj
https://paperpile.com/c/44stgh/PpIj
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by network medicine approaches, these mechanistically inappropriate disease definitions are 

employed for annotation purposes. We therefore advocate that, in order to deliver on the promises 

made by network medicine discipline, experts in this field should work hand in hand with biomedical 

researchers and together aim at a mechanistically grounded disease ontology. 

 

4. Methodology 

4.1. Data integration 

As shown in Table 1, the data sources used to create the different networks use a range of competing 

disease vocabularies to refer to diseases. We hence had to map these vocabularies to a common 

namespace to be able to investigate network (dis-)similarities. The similarity analyses were 

performed in both MONDO (Monarch Disease Ontology) and ICD-10 namespaces and disease ID 

mapping was carried out via the two-step approach implemented in the NeDRex platform. First, 

MONDO contains mappings between its own disease vocabulary and various other vocabularies, 

including OMIM, MeSH, and ICD-10. Then, mappings between several vocabularies and ICD-10 

could be achieved by mapping disease terms to MONDO, followed by mapping MONDO to ICD-10. 

For all pairwise analyses, the two compared networks were aligned before computing GEDs, i.e., 

only the nodes contained in both of them were taken into account. 

Table 1. Data sources used for network construction. 

Data source Used disease 
vocabularies 

Data type Networks constructed from data source 

HPO OMIM, Orphanet 
(ORPHA) 

Disease-symptom Symptom-based diseasome 

DisGeNET Concept Unique 
Identifiers of Unified 
Medical Language 
System (UMLS CUI) 

Disease-gene, 
disease-variant  

Gene-based diseasome, variant-based 
diseasome, disease-gene-gene-disease 
network, drug-protein-protein-drug network, 
drug-protein-protein-disease network 

OMIM OMIM Disease-gene Gene-based diseasome, disease-gene-
gene-disease network, drug-protein-
protein-disease network 

DrugCentral SNOMED Clinical Terms 
(SNOMEDCT) 

Drug-target, 
drug-indication 

Target-based drugome, indication-based 
drugome and drug-disease network, drug-
protein-protein-drug network, drug-protein-
protein-disease network 

DrugBank – Drug-target Target-based drugome, drug-protein-
protein-drug network, drug-protein-protein-
disease network 

CTD MeSH Drug-indication Drug-disease network, indication-based 
drugome 

IID – Protein-protein 
interaction 

Disease-gene-gene-disease network, drug-
protein-protein-drug network, drug-protein-
protein-disease network 
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UniProt – Gene-protein Drug-protein-protein-disease network 

Estonian 
Biobank 

ICD-10 (three- and four-
character codes) 

Comorbidity data Comorbidity-based diseasome 

Additionally, further data harmonisation steps were carried out: Since HPO contains both general 

and specific terms, we pruned the data by removing very general symptom terms, using the existing 

hierarchy in HPO. More specifically, we decomposed the generated hierarchical phenotype network 

into its levels and removed the terms from the top three levels. 

The diagnoses in around 140K patients records available in the Estonian Biobank are encoded in 

ICD-10 namespace, and the records contain both three- and four-character ICD-10 codes. In order 

to generate uniform data, we therefore truncated and aggregated all four-character codes to the 

corresponding three-character level. Moreover, we removed diseases with incidence below five from 

the data, as well as the codes from the ICD-10 chapters XV (“Pregnancy, childbirth and the 

puerperium”), XVI (“Certain conditions originating in the perinatal period”), XVIII (“Symptoms, signs 

and abnormal clinical and laboratory findings, not elsewhere classified”), XIX (“Injury, poisoning and 

certain other consequences of external causes”), XX (“External causes of morbidity and mortality”), 

XXI (“Factors influencing health status and contact with health services”), and XXII (“Codes for 

special purposes”). 

We only used the curated gene-disease associations from DisGeNET and the associations based 

on text mining are not included. This is also explained in the D1.7 report, where we described the 

data integrated in NeDRexDB. The Drug-Disease relationships in CTD, which is a new addition to 

NeDRexDB, have a “Direct Evidence” attribute. We filtered the relationships based on the 

“Therapeutic” which means that the chemical has a known or potential therapeutic role in a disease. 

For DrugBank, drug-target interactions are marked as: Target, Enzymes, Carriers, Transporters. We 

only integrated those marked as Targets. For information about the version/retrieval dates of data 

sources see Supplementary Table 1. 

4.2. Network construction 

For network construction, some part of the data such as disease-gene, drug-indication, drug-target, 

gene-encoding-protein, and PPI data were obtained from the databases shown in Table 1, using the 

data access and mapping provided by the updated version of our NeDRex platform (Sadegh et al., 

2021). Disease-variant associations were directly obtained from DisGeNET. 

Supplementary Table 2 shows the most important properties of all constructed networks. The 

comorbidity-based diseasome was constructed via 𝜙-correlation. Let 𝐼𝑖 denote the incidence of 

disease 𝑖 and 𝐶𝑖𝑗 be the number of patients who were simultaneously diagnosed with diseases 𝑖 and 

https://paperpile.com/c/44stgh/JfgP
https://paperpile.com/c/44stgh/JfgP
https://paperpile.com/c/44stgh/JfgP
https://paperpile.com/c/44stgh/JfgP
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𝑗. The comorbidity between the two diseases can be measured by 𝜙𝑖𝑗 =
𝐶𝑖𝑗𝑁 − 𝐼𝑖𝐼𝑗

√𝐼𝑖𝐼𝑗(𝑁−𝐼𝑖)(𝑁−𝐼𝑗)
, where 𝑁 is 

the total number of patient records (𝑁 = 139,065 for the Estonian Biobank data). When two diseases 

co-occur more frequently than expected by chance, we have 𝜙𝑖𝑗 > 0. We used one-tailed Fisher's 

exact test followed by Benjamini-Hochberg correction for multiple testing to determine the 

significance of comorbidity associations and connected two diseases by an edge if adjusted 𝑃 ≤

0.05. Edge weights were defined using the 𝜙-correlation, i.e., we set 𝑤𝑖𝑗 = 𝜙𝑖𝑗 for diseases 𝑖 and 𝑗 

with significant comorbidity association. 

The indication- and target-based drugomes as well as the gene-, variant-, symptom-, and indication-

based diseasomes were constructed based on the Jaccard index of the respective annotations. 𝐴𝑖 

denotes the set of annotations for a disease or drug 𝑖 used as node in the network under construction 

(e.g., when constructing the gene-based diseasome, 𝐴𝑖 is the set of all genes associated with 

disease 𝑖). We connected diseases 𝑖 and 𝑗 by an edge if |𝐴𝑖 ∩ 𝐴𝑗| ≥ 1 and defined the edge weights 

as 𝑤𝑖𝑗 =
|𝐴𝑖∩𝐴𝑗|

|𝐴𝑖∪𝐴𝑗|
. Disease nodes with |𝐴𝑖| = 0 were removed from the networks, i.e., empty annotation 

sets were treated as missing data. 

The bipartite indication-based drug-disease network was directly constructed from the data source, 

i.e., we connected a disease 𝑖 with a drug 𝑗 if 𝑖 is an indication for 𝑗. For the bipartite target-based 

drug-disease network, we connected a disease 𝑖 with a drug 𝑗 if 𝑗 targets a protein encoded by a 

gene associated to 𝑖. In both drug-disease networks, edges are unweighted. Finally, we constructed 

drug-protein-protein-disease networks where drugs are connected to their targets, experimentally 

validated PPIs from IID are used to connect proteins, and diseases are connected to proteins 

encoded by disease-associated genes. 

All the constructed networks are available in the GitHub repo: 

https://github.com/repotrial/graphsimqt/tree/main/data/graphs 

  

4.3. Graph edit distance 

GED is a distance measure for attributed graphs. It is defined as the minimum cost of transforming 

a source graph 𝐺1 = (𝑉1, 𝐸1) into a target graph 𝐺2 = (𝑉2, 𝐸2) via elementary edit operations, i.e., by 

deleting, inserting, and substituting nodes and edges. Equivalently, GED can be defined as the 

minimum edit cost induced by a node map 𝜋 from 𝐺1 to 𝐺2, where nodes maps 𝜋 ⊆ (𝑉1 ∪ {𝜖1}) × (𝑉2 ∪

{𝜖2}) are relations that cover all nodes 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2 exactly once (𝜖1 and 𝜖2 are dummy nodes 

that may be covered multiple times or left uncovered). 

https://github.com/repotrial/graphsimqt/tree/main/data/graphs
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We used a customised version of GED to compare the different diseasomes, drugomes, and drug-

disease networks constructed as detailed in the previous section as well as their randomised 

counterparts. Since the networks were aligned before all pairwise comparisons, we had 𝑉1 = 𝑉2 = 𝑉 

(node sets are identical) whenever comparing two networks. Consequently, we fixed 𝜋 as the identity 

and computed GED as the sum of edge edit costs induced by the identity (the edge edit cost 

functions 𝑠𝑢𝑏, 𝑑𝑒𝑙, and 𝑖𝑛𝑠 are explained below): 

𝐺𝐸𝐷(𝐺1, 𝐺2)  =  ∑

𝑢𝑣∈ 𝐸1∩ 𝐸2

𝑠𝑢𝑏(𝑢𝑣) + ∑

𝑢𝑣∈ 𝐸1\ 𝐸2

𝑑𝑒𝑙(𝑢𝑣) + ∑

𝑢𝑣∈ 𝐸2\ 𝐸1

𝑖𝑛𝑠(𝑢𝑣) 

𝐺𝐸𝐷(𝐺1, 𝐺2) quantifies the global distance between the graphs 𝐺1 and 𝐺2. Since the node sets of 𝐺1 

and 𝐺2 are identical in our analyses, it can be decomposed as  

𝐺𝐸𝐷(𝐺1, 𝐺2) = ∑𝑢∈𝑉 𝐺𝐸𝐷(𝐺1, 𝐺2, 𝑢)/2, 

where 𝐺𝐸𝐷(𝐺1, 𝐺2, 𝑢) is the local distance between the neighbourhood 𝑁1(𝑢) of node 𝑢 in 𝐺1 and its 

neighbourhood 𝑁2(𝑢) in 𝐺2. The local distances are defined as follows: 

𝐺𝐸𝐷(𝐺1, 𝐺2, 𝑢)  =  ∑

𝑣∈ 𝑁1(𝑢)∩ 𝑁2(𝑢)

𝑠𝑢𝑏(𝑢𝑣) + ∑

𝑣∈ 𝑁1(𝑢)\ 𝑁2(𝑢)

𝑑𝑒𝑙(𝑢𝑣) + ∑

𝑣∈ 𝑁2(𝑢)\ 𝑁1(𝑢)

𝑖𝑛𝑠(𝑢𝑣) 

Based on the local distances, we also computed cluster-level distances for a cluster of nodes 𝐶 ⊆ 𝑉 

as 𝐺𝐸𝐷(𝐺1, 𝐺2, 𝐶) = ∑𝑢∈𝐶 𝐺𝐸𝐷(𝐺1, 𝐺2, 𝑢)/2. 

We used two types of edge edit cost functions, namely, uniform costs and costs based on normalised 

edge ranks. The uniform costs are defined by simply setting 𝑠𝑢𝑏(𝑢𝑣) = 0 and 𝑑𝑒𝑙(𝑢𝑣) = 𝑖𝑛𝑠(𝑢𝑣) = 1 

for all edges 𝑢𝑣. GED with uniform costs quantifies topological (dis-)similarity between two graphs 

but does not consider edge weights. Since edges are weighted in all compared diseasomes, we 

additionally defined edge edit costs based on normalised ranks. For this, we sorted the diseasomes’ 

edges in increasing order with respect to their weights and then normalised the obtained ranks to 

the interval [0,1] via division by the maximum rank. Let 𝑟1(𝑢𝑣) be the normalised rank of edge 𝑢𝑣 in 

diseasome 𝐺1 and 𝑟2(𝑢𝑣) be its normalised rank in 𝐺2. Then we defined the rank-based edit costs 

as 𝑠𝑢𝑏(𝑢𝑣) = |𝑟1(𝑢𝑣) − 𝑟2(𝑢𝑣)|, 𝑑𝑒𝑙(𝑢𝑣) = 𝑟1(𝑢𝑣), and 𝑖𝑛𝑠(𝑢𝑣) = 𝑟2(𝑢𝑣). That is, substitutions are 

expensive if the involved edge’s rank differs a lot in the two graphs and deletions and insertions are 

more expensive for high-ranked than for low-ranked edges. Uniform and rank-based edit costs led 

to similar results. 
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4.4. Statistical analyses based on graph edit distances 

Using GED, we tested the local- and the global-scale hypotheses as follows: For each pair 𝐺1,  𝐺2 

of compared networks, we generated 1,000 randomised counterparts 𝐺1
1, … , 𝐺1

1000 and 𝐺2
1, … , 𝐺2

1000. 

For this, we used a random network generator which repeatedly swaps edges and non-edges to 

obtain randomised counterparts which exactly preserve the node degrees of the original networks. 

For each node 𝑢, we then computed 𝐺𝐸𝐷(𝐺1, 𝐺2, 𝑢) as well as 𝐺𝐸𝐷(𝐺1
𝑖 , 𝐺2

𝑖 , 𝑢) for each 𝑖 = 1, … ,1000 

and also computed the global distances 𝐺𝐸𝐷(𝐺1, 𝐺2) and 𝐺𝐸𝐷(𝐺1
𝑖 , 𝐺2

𝑖 ).  

To test the global-scale hypothesis, we computed empirical P-values as𝑃 = (1 +

∑1000
𝑖=1 [𝐺𝐸𝐷(𝐺1, 𝐺2) ≥ 𝐺𝐸𝐷(𝐺1

𝑖 , 𝐺2
𝑖 )]) / (1 + 1000), where [𝑡𝑟𝑢𝑒] = 1 and [𝑓𝑎𝑙𝑠𝑒] = 0. To test the 

local-scale hypothesis, we used the one-sided Mann-Whitney U test to assess whether the local 

distances {𝐺𝐸𝐷(𝐺1, 𝐺2, 𝑢)|𝑢 ∈ 𝑉} for the original networks are significantly smaller than the local 

distances  {𝐺𝐸𝐷(𝐺1
𝑖 , 𝐺2

𝑖 , 𝑢)|𝑢 ∈ 𝑉, 𝑖 = 1, … ,1000} for the randomised counterparts. Moreover, we 

computed node-specific local empirical P-values as 𝑃(𝑢) = (1 + ∑1000
𝑖=1 [𝐺𝐸𝐷(𝐺1, 𝐺2, 𝑢) ≥

𝐺𝐸𝐷(𝐺1
𝑖 , 𝐺2

𝑖 , 𝑢)]) / (1 + 1000) and cluster-level empirical P-values as 𝑃(𝐶) = (1 +

∑1000
𝑖=1 [𝐺𝐸𝐷(𝐺1, 𝐺2, 𝐶) ≥ 𝐺𝐸𝐷(𝐺1

𝑖 , 𝐺2
𝑖 , 𝐶)]) / (1 + 1000), where 𝐶 ⊆ 𝑉 is a cluster of nodes. 

 

4.5. Statistical analyses based on shortest path distances 

We carried out analyses based on shortest path distances between (1) all disease-disease pairs in 

a disease-gene-gene-disease network, (2) all drug-drug pairs in a drug-protein-protein-drug network, 

and (3) all disease-drug pairs in a disease-protein-protein-drug network. For each network, we split 

the multi-set of obtained distances into multi-sets 𝑋0 and 𝑋1, where 𝑋1 contains the shortest path 

distances for all node pairs contained as edge in a reference network and 𝑋0 contains all other 

shortest path distances. As reference networks, we used (1) drug-, symptom-, comorbidity-, and 

variant-based diseasomes, (2) a bipartite drug-indication network, and (3) an indication-based drug-

drug network. We then used the one-sided Mann-Whitney U test to assess whether the shortest path 

distances contained in 𝑋1 are significantly smaller than those contained in 𝑋0.   

 

4.6. Implementation 

We have implemented all network analysis approaches underlying this work in a Python package 

called GraphSimQT (“graph similarity quantification tool”), which is freely available on GitHub 

(https://github.com/repotrial/graphsimqt). GraphSimQT uses graph-tool library for network handling 

and Scipy library for carrying out statistical tests and comes with all networks and scripts to reproduce 

https://github.com/repotrial/graphsimqt
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the results reported in this work. Moreover, GraphSimQT can be used to compare user-provided 

networks. Significance of comorbidity associations was evaluated using the Scipy implementation of 

Fisher’s exact test and the stats models implementation of Benjamini-Hochberg multiple testing 

correction. 

 

5. Results 

We first constructed various diseasomes (including comorbiditome), drugomes, and drug-disease 

networks based on different data types. An overview of the used data types and derived networks is 

shown in Supplementary Figure 1A. The data bases used to construct the networks as well as some 

properties of the derived networks are shown in Table 1 and Supplementary table 2, respectively. 

Using GED, we then compared these networks in a pairwise manner both on a local scale, i.e. 

zoomed-in on individual disease or drug nodes, and on a global scale. In order to test the hypotheses 

introduced before, we generated 1000 permuted networks as randomised counterparts for each 

network. Network randomization (done with edge swap method) and computation of local and global 

GED are illustrated in Supplementary Figures 1B and 1C. We also investigated the impact of disease 

ontologies of different granularity on the similarity analyses of networks. To this end, where possible, 

we constructed the networks both in MONDO and in ICD-10 namespace (using three-character level 

codes). Since the pair-wise comorbidity data provided by Estonian Biobank was originally in ICD-10 

codes and access to the patient level of data, which is necessary to map to another disease ID 

system before establishing the comorbidity edges, was not possible, the GED plots for analyses in 

MONDO is missing for the comparisons of comorbidity-based diseasome to other diseasomes. 

We computed two different versions of GED using uniform and rank-based edge editing costs, 

respectively. Uniform edit costs discard the association strengths of the edges in the compared 

networks, i.e., the networks are considered unweighted; rank-based edit costs incorporate them by 

making it more expensive to delete or insert edges with strong associations or to substitute them by 

edges with weak associations. More details on disease ontology mapping, network construction, and 

GED computation can be found in the Methods Section. 

5.1. Analyses of diseasomes and drugomes on the global scale 

To test the global-scale hypothesis, we computed empirical P-values for each pair of networks based 

on global GEDs. For all evaluated pairs of networks (both in MONDO and in ICD-10 namespace), 

we obtained smaller global GEDs for the original diseaseomes, drugomes, or drug-disease networks 

than for randomised counterparts, leading to empirical P-values which are significant at 0.001 level. 

Differences between GEDs obtained for permuted and original networks are shown in Figures 1 and 

2. 
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Furthermore, we performed analyses based on shortest path distances between disease-disease, 

drug-drug, and drug-disease pairs in disease-gene-gene-disease, drug-protein-protein-drug, and 

disease-protein-protein-drug networks, where protein-protein and gene-gene links were obtained 

from PPIs. We then compared shortest path distances for node pairs which do and node pairs which 

do not have a link in different reference networks, using the Mann-Whitney U test. For all analyses, 

we observed that shortest path distances are significantly shorter for node pairs that are connected 

by a link in the reference networks (Figure 3). In particular, the results show (1) that distances 

between diseases that are connected by edges in diseasomes constructed based on comorbidities, 

shared drugs, shared symptoms, or shared genetic variants are significantly shorter than distances 

between diseases without such edges (Figure 3A–3D); (2) that distances of disease-drug pairs with 

shared indication edges are significantly shorter than distances of disease-drug pairs without such 

edges (Figure 3E); and (3) that distances between drug pairs with shared indication are significantly 

shorter than distances for drug pairs without shared indications (Figure 3F). In sum, our global 

analyses hence provide solid evidence for the global validity of the network medicine paradigm. 
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Figure 1. Pairwise similarities between networks, global distances, rank-based edge edit costs. 

Differences of global GEDs between the original and permuted network, and corresponding global empirical 

P-values. (A-F) Similarity between diseasomes in both MONDO and ICD-10 namespaces. (G-J) 

Comorbidity-based vs. other diseasomes in ICD-10 namespaces. (K) Target- vs. indication-based drugomes. 

All P-value results are at the lower limit for precision due to the 1,000 random networks used in the 

computation.  
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Figure 2. Pairwise similarities between networks, global distances, uniform edge edit costs. 

Differences of global GEDs between the original and permuted network, and corresponding global empirical 

P-values.  (A-F) Similarities between diseasomes in both MONDO and ICD-10 namespaces. (G) Indication- 

vs. protein-based drug-disease network in both MONDO and ICD-10 namespaces. (H-K) Comorbidity-based 

vs. other diseasomes in ICD-10 namespace. (L) Target- vs. indication-based drugomes. All P-value results 

are at the lower limit for precision due to the 1,000 random networks used in the computation.   

 



 

D1.10 Refined diseasome and drugome 3.5 
  

 
 

 

 

 
This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 777111. 

 
Page 19 of 35 

 

 

Figure 3. Shortest path distances for node pairs with and without edges in reference networks and 

the corresponding Mann-Whitney U P-values. (A-D) Disease distances in disease-protein-protein-disease 

(DPPD) network vs. different diseasomes as the reference network. (E) Drug-disease distances in drug-

protein-protein-disease (DrPPD) network vs. drug-indication network as the reference network. (F) Drug 

distances in drug-protein-protein-drug (DrPPDr) network vs. indication-based drugome as the reference 

network. All networks are constructed in the MONDO namespace. 

 

5.2. Analyses of diseasomes and drugomes on the local scale 

To test the local-scale hypothesis, we computed P-values using the one-sided Mann-Whitney U test 

based on local GEDs to evaluate whether the local distances for the original networks are 

significantly smaller than the local distances for the permuted counterparts. Local GEDs of nodes 

obtained for the permuted and original networks and the corresponding Mann-Whitney U P-values 

are shown in Figures 4 and 5. The overview of the results of the local GED analyses in different 

namespaces shows that the comparisons performed in ICD-10 namespace (at three-character level) 

led to more significant similarities than the ones performed in MONDO namespace (Figures 6 and 

7). As an example, the P-value computed from the local GEDs of drug-based vs. gene-based 

diseasomes in ICD-10 namespace is significant at 0.0001 level (𝑃 ≈ 7.1 × 10−7), while it is not 

significant in MONDO namespace (𝑃 ≈ 0.071).  

The results of the Mann-Whitney U test for local GED analyses point out that we have more 

significant similarities in ICD-10 than in MONDO namespace. The results also suggest that variant-
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based diseasomes have higher similarities with other diseasomes than gene-based diseasomes, 

considering both namespaces. By inspecting the P-values of drug nodes against disease nodes 

obtained from local similarity analyses of indication- vs. protein-based drug-disease network as well 

as P-values obtained from target- and indication-based drugome (significant at 0.001 level), we 

discovered that, in general, drug neighbourhoods are better preserved across the compared 

networks than disease neighbourhoods (Figure 6A, right panel). 

Furthermore, we computed local empirical P-values individually for nodes based on local GEDs. The 

fractions of significant local empirical P-values at 0.05 level are shown in Figures 6B and 7B. By 

comparing the results in different namespaces, we observe that the fraction of diseases with small 

local empirical P-values is higher in ICD-10 namespace than in MONDO namespace. Moreover, our 

results show that, for a substantial fraction of disease nodes, local neighbourhoods of diseases are 

not preserved not only not significantly better but worse than expected by chance across the different 

diseasomes. The local-scale hypothesis hence seems to hold for some diseases, but does not hold 

at all for others. In follow-up analyses, we tried to identify patterns explaining these results, e.g., by 

assessing whether there are certain chapters of the ICD-10 disease ontology which are enriched 

with diseases with very small or very large empirical P-values. However, no clear patterns could be 

discovered, indicating that it is very hard to predict for which concrete diseases network medicine 

approaches can be expected to yield robust and reliable results. 
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Figure 4. Pairwise similarities between networks, global view on local distances, uniform edge edit 

costs. Local GEDs (of all nodes) between a pair of networks for the original vs. permuted network and 

corresponding Mann-Whitney U P-values. (A-F) Similarities between diseasomes in both MONDO and ICD-

10 namespaces. (G-H) Indication- vs. protein-based drug-disease network in both MONDO and ICD-10 

namespaces (separately for drugs and diseases). (I-L) Comorbidity-based vs. other diseasomes in ICD-10 

namespaces. (M) Target- vs. indication-based drugomes.  
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Figure 5. Pairwise similarities between networks, global view on local distances, rank-based edge 

edit costs. Local GEDs (of all nodes) between a pair of networks for the original vs. permuted network and 

corresponding Mann-Whitney U P-values. (A-F) Similarity between diseasomes in both MONDO and ICD-10 

namespaces. (G-J) Comorbidity-based vs. other diseasomes in ICD-10 namespace. (K) target- vs. 

indication-based drugomes. 
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Figure 6. Overview of local scale analyses, uniform edge edit costs. (A) Mann-Whitney U P-values 

computed from local GEDs with the level of their significance. (B) Fraction of significant local empirical P-

values at 0.05 level computed from local GEDs on a pair of networks for the original vs. permuted network.  
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Figure 7. Overview of local scale analyses, rank-based edge edit costs. (A) Mann-Whitney U P-values 

computed from local GEDs with the level of their significance. (B) Fraction of significant local empirical P-

values at 0.05 level computed from local GEDs on a pair of networks for the original vs. permuted network.  

When using MONDO terms (i.e., individual diseases) as nodes in the diseasomes, only the 

comparisons between gene- and variant-based diseasomes consistently (with respect to both 

uniform and rank-based edit costs) led to smaller local distances in the original networks than in their 

randomised counterparts. No other comparisons in the MONDO namespace yielded significant P-

values for both uniform and rank-based edit costs. When using ICD-10 three-character codes (which 

denote disease clusters rather than individual diseases), around 50% of all computed P-values are 

significant at 0.001 level. 

 

5.3. Neurodegenerative diseases as case example 

Here, we visualise the phenomenon of local blurriness in network medicine with a small example. 

We compiled a list of “neurodegenerative diseases” from the MONDO disease hierarchy. From ths 

list, we kept those for which we have nodes in the aligned gene- and drug-based diseasomes. This 
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led to a cluster of seven neurodegenerative diseases which are highly connected in both 

diseasomes. Figure 8 shows this cluster, together with the contained diseases’ local empirical P-

values obtained from the comparison of gene- and drug-based diseasomes in MONDO space, the 

global empirical P-value, as well as the cluster-level empirical P-value. While only two local empirical 

P-values are significant at 0.05 level, the cluster-level and global empirical P-values are significant 

at levels 0.01 and 0.001, respectively. 

 

Figure 8. Blurred results for neurodegenerative diseases at the local level. The colour gradient 

visualises local, global, and cluster-level empirical P-values obtained from the comparison of gene- and 

drug-based diseasomes in MONDO namespace. The gene-based diseasome was constructed based on 

disease-gene association data and two diseases were connected by an edge if they share at least one 

disease associated gene. The drug-based diseasome was constructed based on drug-indication data 

integrated and two diseases were connected by an edge if they share at least one indicated drug. 

 

6. Open issues 

6.1. Differing disease ontologies 

While there are vast amounts of datasets online that contain useful information about diseases such 

as genetic associations, comorbidities, and symptoms, each of these datasets may use different 

disease ontologies to describe their associations. The ontologies have different degrees of 

granularity, and are generated in different ways and for different purposes. Consequently, integration 

of disease terms is a mammoth task that involves losing large swathes of data due to unmappable 
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terms (see Figure 9 for the levels of completeness of disease ontology mappings underlying this 

work). 

 

Figure 9. Levels of completeness of disease ontology mappings underlying this article. For each 

source-target ontology pair, mappability is computed as the percentage of terms in the source ontology used 

in this study that could be mapped to a term in the target ontology.  

The choice of the disease ontology has the potential to dramatically affect the results of downstream 

analyses: While our results largely support the local-scale hypothesis for ICD-10 three-character 

disease terms, the same analyses carried out in MONDO namespace led to only few significant 

results. At the same time, for most analysis tasks, the choice of the disease ontology is dictated by 

the format of the data and, thus, often impossible to change without losing information at the time of 

analysis. The ontologies used to annotate disease-associated data must hence be viewed as 

confounders which are very difficult if not impossible to control for. 

 

6.2. Mechanistically inadequate disease ontologies 

Currently used disease ontologies are not only discordant, but also mechanistically inadequate: 

Disease names are variable and non-standardized, often reflecting the person who coined the 

disease term (e.g., “Alzheimer’s disease”), areas in the body that are affected (e.g., “kidney stones”) 

or symptoms of the disease (e.g., “irritable bowel syndrome”). This leads to data that is blurred, as 

diseases that should be separately defined based on their mechanistic pathways are being 

aggregated together, e.g., due to symptom or organ commonality. This blurriness not only has 
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severe clinical ramifications (patients with mechanistically distinct diseases receive the same 

untargeted treatment), but also makes it very challenging to mine disease-associated data for 

pathomechanisms via network medicine approaches (Nogales et al., 2022). Since such analyses 

often require case-versus-control or subtype annotations as input, it is very difficult to obtain 

meaningful results if the employed disease definitions are too unspecific. 

 

 

Figure 10. Effect of disease term granularity on results of GED-based analyses. 

The results presented in this study, where drugome comparisons have led to more significant results 

on a local level than diseasome comparisons, are evidence that network-based analyses yield more 

targeted and reliable results when the underlying annotations are well-defined (such as in drug 

ontologies). Comparing the results of the GED-based analyses for full diseasomes (global analyses) 

with those obtained for analyses based on local GEDs in diseasomes with ICD-10 three-character 

codes and MONDO terms as nodes, respectively, further highlights the detrimental effect of local 

blurriness in currently used disease definitions: The higher the resolution of the analysis, the less 

significant the obtained P-values (see Figure 10). 

 

6.3. Potential limitation of the comorbiditome 

The constructed comorbiditome is not a real representative across different ethnicities. However, 

building such a complete database to cover all ethnicities, age groups and both genders is almost 

impossible because it requires the integration of numerous health record data of different countries 

(which is outside the scope of REPO-TRIAL), to balance out ethnic, gender and age imbalances 

within the data. 

https://paperpile.com/c/44stgh/PpIj
https://paperpile.com/c/44stgh/PpIj
https://paperpile.com/c/44stgh/PpIj
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6.4. Outlook 

As mentioned earlier all the constructed networks are available in graph format files that can be 

loaded in any network visualisation tools like Cytoscape and explored further. Most of the data and 

networks are also available via the NeDRex-Web tool for further advanced and guided analyses (see 

deliverable D1.9). We have plans to make the comorbiditome data also available through the online 

user interface and provide features and functionalities for further exploration of comorbiditome in 

combination with other types of data. To make the most efficient use of time until the end of the 

project, we are currently collecting input from the potential users of NeDRex before implementing 

the new features based on users’ needs. 

 

7. Deviations (if applicable) 

Not applicable. 
 
 

8. Conclusion 

The initial goal of this deliverable was to create a refined diseasome and drugome, which was 

achieved by using multitude disease/drug association data types such as genetic variant, symptom, 

comorbidity, and drug-indication data. This task was only possible by expert Disease ID mapping 

and curation to allow multi-scale diseasome construction. Making these information-rich networks 

available as pre-built graphs, allows for further investigations by the tools we developed for the 

NeDRex platform in the framework of REPO-TRIAL. Implementing additional network-based 

methods such as global and local GED methods in a Python package as part of the NeDRex platform 

equips experts to run further customised analyses. 

Our global analyses provide solid evidence for the global-scale hypothesis and therefore global 

validity of the network medicine paradigm while our local analyses only provide weak evidence for 

the local scale hypothesis, indicating the network medicine tends to produce locally blurred results. 

Our similarity analyses results indicate that the most prominent reason for the observed translational 

underperformance of network medicine is that disease-associated data is blurred at a local level due 

to inadequate disease definitions. The most obvious causes are the lack of a mechanism-based 

disease ontology, as well as the fact that data is annotated using a plethora of discordant and 

therefore partly unmappable disease ontologies. We are hence faced with a chicken-and-egg 

problem: Network medicine aims at uncovering pathomechanisms underlying complex diseases, but 

in order to reach this objective, it seems that we need mechanistically adequate disease definitions 

to begin with. 

To escape this dilemma, we suggest the following way forward: Firstly, unsupervised network 

medicine methods are needed, which not only return candidate pathomechanisms but at the same 
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time de novo cluster patients into subgroups and hence do not rely on potentially misleading priorly 

available case-versus-control or subtype annotations. While few such approaches exist (Larsen, 

Schmidt and Baumbach, 2020; Lazareva et al., 2020; Zolotareva et al., 2020), most existing 

pathomechanism mining methods still rely on case-versus-control annotations (List et al., 2016; 

Batra et al., 2017) or lists of genes associated with a (potentially ill-defined) disease (Ghiassian, 

Menche and Barabási, 2015; Levi, Elkon and Shamir, 2021; Bernett et al., 2022). 

Secondly – and more importantly – we are convinced that the dilemma described above can only be 

resolved if bioinformaticians and data scientists working in the field of network medicine closely 

collaborate with researchers from the biomedical sciences and jointly analyse molecular as well as 

deep phenotype data for the same patients. In such a collaborative setup, a positive feedback loop 

could emerge, where initial hypotheses about disease subtypes and their underlying 

pathomechanisms are formulated based on the analysis of molecular data, further refined using 

deep phenotyping (e.g., histological images, blood-derived biomarkers, etc.) and expert knowledge 

of the clinicians, and finally validated in preclinical studies (e.g., gain- or loss-of-function studies). 

For this to happen, however, several hurdles have to be overcome: Bioinformaticians have to be 

willing to engage in close-up analyses of specific biomedical questions and to understand the 

involved biology. Biomedical scientists have to acknowledge the critical importance of data science 

to their fields and be willing to share data generated in their institutions. And, last but not least, 

protocols have to be implemented that allow joint analyses of molecular and deep phenotype data 

while respecting data protection regulations such as the General Data Protection Regulation of the 

European Union (Cohen and Nissim, 2020). 
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10. Table of acronyms and definitions  
 

BIOCRATES Biocrates Life Sciences AG 
concentris concentris research management GmbH 

CC Connected Component 

GED Graph Edit Distance 

ICD International Classification of Diseases 

HMPC Mucke Hermann 

LCC Largest Connected Component 

MHH Medizinische Hochschule Hannover 

MLU Martin-Luther-Universität Halle-Wittenberg 

MONDO Monarch Disease Ontology 

UHAM University of Hamburg 

UKE Universitätsklinikum Essen 

UM Universiteit Maastricht 

UNEW University of Newcastle upon Tyne 

WP Work package 
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11. Other supporting documents / figures / tables 

 

 

Supplementary Figure 1. Overview of compared networks and graph edit distance computation. (A) 

We compared five different types of disease-disease networks (diseasomes), two different types of drug-drug 

networks (drugomes), and two different types of drug-disease networks. (B) Node dissimilarity across 

different networks was quantified by the local graph edit distance (GED) of their neighbourhoods. (C) 

Networks were compared globally via global GED, obtained by summing up the local GEDs of the individual 

nodes. 

Supplementary Table 1. Version/retrieval dates of the used data sources. 

Database Date obtained 
(version, if 

known)  

Edges/association contributed 

OMIM 2020-03-10* Gene-[associated with]-Disorder 

IID 2020-02-11 
(v2018-11) 

Protein-[interacts with]-Protein 

HPO 2022-02-14 Disorder-[has]-Phenotype 

DrugBank 2020-02-11 
(v5.1.5) 

Drug-[has target]-Protein 

DisGeNET* 2019-12-02 
(v6.0) 

Gene-[associated with]-Disorder 

DrugCentral 2020-05-16 Drug-[has target]-Protein 
Drug-[has indication]-Disorder 
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CTD 2021-06 Drug-[has indication]-Disorder 

UniProt 2020-02-11 Gene-[encoded by]-Protein 
Protein-[is isoform of]-Protein 

Estonian 
Biobank 

2020-04 Disease-[codiagnosed]-Disease  

* Only curated gene-disease associations from DisGeNET are integrated. 

 

Supplementary Table 2. Properties of constructed networks. Drugomes were constructed only in MONDO 

namespace and the comorbidity-based diseasome only in ICD-10 namespace (since Estonian Biobank uses 

ICD-10 codes, mapping the comorbidities to the finer-grained MONDO namespace was impossible). 

Network # Nodes # Edges # CCs Size of 
LCC 

Density # Isolated 
nodes 

MONDO namespace 

Gene-based diseasome 8,284 118,726 1,571 6,598 0.00346 1,483 

Variant-based diseasome 8,759 677,241 1,401 7,162 0.01766 1,250 

Symptom-based diseasome 9,926 10,982,517 43 9,883 0.22296 41 

Drug-based diseasome 1,772 129,788 42 1,724 0.08271 36 

Target-based drugome 5,878 272,010 164 5,619 0.01575 108 

Indication-based drugome 2,249 194,959 42 2,195 0.07712 34 

Protein-based drug-disease 
network 

1,629 dr 
607 dis 

37,360 1 2,236 0.03778 0 

Indication-based drug-
disease network 

2,249 dr 
1,772 dis 

15,800 1 4,021 0.00396 0 

Drug-protein-protein-disease 7,473 dis 
5,878 dr 
24,757 pr 

422,617 52 37,967 0.00066 0 

Disease-gene-gene-disease 8,284 dis 
18,113 g 

371,385 810 24,768 0.00118 0 

ICD-10 namespace (3-character codes) 

Gene-based diseasome  755 45,671 28 728 0.16045 27 

Variant-based diseasome 894 101,554 22 872 0.25441 20 

Symptom-based diseasome 735 150,618 3 733 0.37165 2 
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Drug-based diseasome 714 60,832 8 705 0.23899 5 

Comorbidity-based 
diseasome 

1,114 122,030 1 1,114 0.19684 0 

Target-based drug-disease 
network 

1,588 dr 
382 dis 

63,690 1 1,970 0.10499 0 

Indication-based drug-
disease network 

1,950 dr 
714 dis 

14,299 8 2,640 0.01027 0 

 


