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Abstract

As the development of new drugs reaches its physical and financial limits, drug repurposing has become more important than ever. For
mechanistically grounded drug repurposing, it is crucial to uncover the disease mechanisms and to detect clusters of mechanistically
related diseases. Various methods for computing candidate disease mechanisms and disease clusters exist. However, in the absence
of ground truth, in silico validation is challenging. This constitutes a major hurdle toward the adoption of in silico prediction tools
by experimentalists who are often hesitant to carry out wet-lab validations for predicted candidate mechanisms without clearly
quantified initial plausibility. To address this problem, we present DIGEST (in silico validation of disease and gene sets, clusterings or
subnetworks), a Python-based validation tool available as a web interface (https://digest-validation.net), as a stand-alone package or
over a REST API. DIGEST greatly facilitates in silico validation of gene and disease sets, clusterings or subnetworks via fully automated
pipelines comprising disease and gene ID mapping, enrichment analysis, comparisons of shared genes and variants and background
distribution estimation. Moreover, functionality is provided to automatically update the external databases used by the pipelines.
DIGEST hence allows the user to assess the statistical significance of candidate mechanisms with regard to functional and genetic
coherence and enables the computation of empirical P-values with just a few mouse clicks.
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Introduction
The main objective of systems medicine is to uncover
molecular mechanisms driving complex diseases and
thereby pave the way for causally effective treatment. A
plethora of computational approaches designed to sup-
port this overall aim exist, ranging from classical differ-
ential gene expression analysis tools [18] over comorbid-
ity pattern analysis frameworks [11] to network-based
disease mechanism mining methods [4, 10, 20, 21]. Inde-
pendently of the concrete algorithmic model, computa-
tional systems medicine approaches often return sets,
clusterings or subnetworks of genes or diseases as out-
put. For instance, the typical output of differential gene
expression analyses are sets of differentially expressed
genes (DEGs) for case versus control studies or clus-
terings of DEGs for different disease subtypes. Comor-
bidity analyses, on the other hand, often return sets
or clusterings of diseases that are predicted to share
common molecular mechanisms. Disease mechanism
mining approaches typically return small induced sub-
networks in protein–protein interaction (PPI) or gene reg-
ulatory networks.

In order to have translational potential, pre-clinical
studies are necessary to test the hypotheses generated by
computational systems medicine approaches in cell lines
or animal models. However, such studies are typically
resource-intensive, which implies that the hypotheses
derived via computational means must have solid prior
plausibility in order to convince pre-clinical researchers
to invest time and money in follow-up hypothesis testing.
Consequently, tools are needed which allow to in silico
quantify the hypotheses’ initial plausibility in a user-
friendly way.

A widely used approach for in silico validation of
hypotheses generated by computational systems medicine
approaches is to employ functional annotations available
in data sources such as the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [14] or the Gene Ontology
(GO) [2, 9]. Various tools exist which allow enrichment
analyses against these data sources, including DAVID
[13], PANTHER [26], g:Profiler [32] and WebGestalt [22].
However, to the best of our knowledge, all existing tools
have two limitations: Firstly, only gene sets are accepted
as input and neither disease sets nor gene or disease
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Table 1. Features of DIGEST and existing online validation tools. Check marks in parentheses indicate that DIGEST provides the
respective features via calls to the API of g:Profiler.

DAVID PANTHER g:Profiler WebGestalt DIGEST

Tabular results
Empirical P-values X X X X �
Enriched annotations � � � � (�)
Most frequent annotations X X X X �
Summary figures
Empirical P-values X X X X �
Enriched annotations X � X � X
Most frequent annotations X � X � �
Annotation distribution X X X X �
Annotation graph X X X � X
Publication-ready figures X X X � �
Supported input types
Gene set � � � � �
Gene clustering X X X X �
Gene subnetwork X X X X �
Disease set X X X X �
Disease clustering X X X X �
Disease subnetwork X X X X �
Supported data sources
Gene ontology � � � � �
Biological pathways � � � � �
Regulatory motifs in DNA � X � � X
Protein databases � � � � X
Phenotype ontology � X � � X
Gene-disease associations � X X � �
Variant-disease associations X X X X �
Automated mapping
Automated gene ID mapping � � � � �
Gene ID conversion � X � � X
Automated disease ID mapping X X X X �
Support beyond homo sapiens � � � � X
Orthology-based gene mapping X X � X X
Supported analyses
Gene set enrichment analysis � � � � (�)
Reference-free functional coherence � � � � �
Reference-based functional coherence X X X � �
Reference-free genetic coherence X X X � �
Reference-based genetic coherence X X X X �

clusterings or subnetworks are supported. Secondly,
functionality to assess the statistical significance of the
obtained enrichment scores in comparison to random
background models is missing.

In order to fill these gaps, we present DIGEST (short
for ‘in silico validation of disease and gene sets or
clusterings’) — an in silico validation tool for compu-
tational systems medicine approaches that allows the
validation of different input types in a fully automated
and user-friendly way. DIGEST is available as a web ser-
vice (https://digest-validation.net), as a Python package
(https://pypi.org/project/biodigest) and as a REST API
(https://api.digest-validation.net). Table 1 provides an
overview of its main features in comparison to the exist-
ing tools DAVID, PANTHER, g:Profiler and WebGestalt.
Note that DIGEST is intended to complement rather
than replace these tools. For instance, DIGEST focuses
on human diseases and so does not offer support beyond
homo sapiens. Moreover, DIGEST is not primarily designed
for classical gene set enrichment analysis [39], although

this feature is indirectly supported via calls to the API of
g:Profiler.

Results
Overview of DIGEST and supported input types
The main result of this paper is the DIGEST vali-
dation tool itself. Figure 1 provides an overview of
its functionality and the supported validation routes.
Similar to existing approaches, DIGEST can perform
functional analysis on gene sets using GO and KEGG.
In addition to the gene set enrichment analysis, gene
sets can also be validated for functional coherence via
pairwise comparisons of the contained genes’ functional
annotations. Like WebGestalt, DIGEST also offers the
possibility to provide a reference gene set. Alternatively,
a reference disease ID can be provided by the user.
In addition to analyzing gene sets, DIGEST allows
validation of gene clusterings based on clustering quality
measures such as the Dunn index [8], the sillhouette
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Fig. 1. Overview of validation routes provided by DIGEST. (A) As input, DIGEST supports sets, clusterings (i.e. sets of sets) and subnetworks of genes or
diseases. For disease and gene sets or subnetworks, a second set or a disease ID can optionally be provided as reference. (B) DIGEST queries NeDRex [36]
to automatically map the gene or disease IDs provided as input to the required namespaces. Depending on the provided input, functional or genetic
coherence scores are computed using GO [2, 9] or KEGG [14] enrichment or genetic associations obtained from DisGeNET [30]. Subsequently, empirical
P-values are computed by comparing the obtained scores against two random background models. (C) The results of the validations are provided in the
form of summary figures, as well as in tabular format. Moreover, gene set enrichment analysis is supported via calls to the API of g:Profiler.

score [34] and the Davies–Bouldin index [6]. As in the
gene set analysis, functional annotations from GO
and KEGG are used for computing the gene distances
underlying these measures. Finally, DIGEST can be used
to in silico validate induced subnetworks in gene–gene
networks.

Unlike all existing approaches we are aware of, DIGEST
also supports disease IDs as input. As for genes, sets
and clusterings of disease IDs are supported, as well as
induced subnetworks in disease–disease networks. The
input can be validated w. r. t. functional coherence based
on annotations obtained from KEGG. Moreover, DIGEST
supports a genetic coherence analysis for diseases based
on shared genes or variants extracted from DisGeNET
[30].

A further novelty of DIGEST w. r. t. existing approaches
is that it allows to evaluate whether the obtained scores
of functional or genetic coherence are statistically sig-
nificant. This is important because scores such as the
Dunn index or the silhouette score are often difficult
to interpret. In order to be able to judge whether an
obtained score is ‘good’ or ‘bad’, a comparison against a
random background is required. Therefore, DIGEST pro-
vides random background models for all input types and
uses them to compute empirical P-values quantifying the
significance of the obtained scores.

In the sequel, we showcase how to use DIGEST for
validation of gene and disease sets, clusterings and

subnetworks. Technical and algorithmic details can be
found in the ‘Methods’ section.

In silico validation of gene sets
Since prior studies have linked lipid and cholesterol
metabolism to Alzheimer’s disease (AD) [7], Sadegh et al.
[36] hypothesized that hyperlipidemia-associated genes
obtained from OMIM [1] and DisGeNET [30] constitute
a promising point of departure for network-based AD
drug repurposing. We ran DIGEST’s reference-based gene
set validation route to assess this hypothesis, using the
AD-associated genes as query and the hyperlipidemia-
associated genes as reference set (the genes contained in
the sets are listed in Supplementary Table 1). To compute
empirical P-values, we used a random background
model that preserves the sizes of the contained genes’
annotation sets.

The results are shown in Figure 2. While significant
P-values were obtained for all three types of GO terms
(BP: biological process; CC: cellular component; MF:
molecular function), results were not significant for
KEGG pathways. This can be explained by the fact that
the Jaccard index between KEGG pathways containing,
respectively, AD- and hyperlipidemia-associate genes is
0.0 (see the red vertical line in Figure 2b). Nonetheless,
the results lend evidence to the conjecture that AD
is mechanistically linked to hyperlipidemia and that
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Fig. 2. Results of reference-based gene set validation route for hyperlipidemia-based AD drug repurposing approach suggested by Sadegh et al. [36]. (A)
Empirical P-values obtained by comparing the mean Jaccard index of pairwise annotation sets against random background. (B) KEGG-based Jaccard
indices for input gene set (red vertical line) and gene sets generated by background model.

Fig. 3. Candidate pathomechanisms for luminal (blue) and basal (yellow)
breast cancer reported in [20]. Genes are connected by an edge if the
BioGRID [29] database contains a PPI for their encoded proteins.

hyperlidipidemia-associated genes are a promising
starting point for in silico AD drug repurposing.

In silico validation of gene clusterings
BiCoN [20] is a network medicine tool which allows
binary patient stratification based on gene expression
data. At the same time, it extracts two subgraphs from
PPI networks that explain the patient stratification and
hence constitute candidate pathomechanisms. In the
original publication, the authors used BiCoN on gene
expression data for breast cancer and obtained a patient
clustering that almost perfectly matches the luminal
versus basal breast cancer sub-types. Figure 3 shows the
two candidate pathomechanisms. Here, we interpreted
these predicted pathomechanisms as a gene clustering
with two blocks, and used DIGEST’s gene clustering
validation route to assess its functional coherence.

Figure 4 shows the results of the analysis. We did not
obtain significant P-values for any of the four gene anno-
tation options supported by DIGEST. The results hence
provide little evidence for the hypothesis that the two
sub-networks extracted by BiCoN indeed correspond to
distinct pathomechanisms.

Table 2. List of diseases linked to cGMP signaling by Langhauser
et al. [17] and their respective MeSH IDs.

Disease MeSH ID

Stroke D020521
Alzheimer disease D000544
Dementia D003704
Atherosclerosis D050197
Asthma D001249
Diabetes mellitus type 2 D003924
Parkinson disease D010300
Heart failure D006333
Migraine disorders D008881
Myocardial infarction D009203
Hypertension D006973
Obesity D009765

In silico validation of disease sets
Using a network-based systems medicine approach,
Langhauser et al. [17] identified a set of 12 diseases
hypothesized to share a common mechanism linked
to cyclic guanosine monophosphate (cGMP) signaling.
The set of these presumably mechanistically related
diseases, specified in the MeSH namespace as in the
original publication, is shown in Table 2.

We used DIGEST’s reference-free disease set validation
route with random background models that preserve
annotation set size to assess the genetic and functional
coherence of this set of diseases. The results are shown
in Figure 5. For all three annotation types, the disease set
exhibits a significant internal coherence. Using DIGEST,
we could hence provide further evidence for Langhauser
et al.’s hypothesis that the diseases listed in Table 2 are
mechanistically related.

In silico validation of disease clusterings
To exemplify the use of DIGESTS’s disease clustering
validation route, we analyzed the clustering of the ICD-10
three-character codes induced by chapter IX ‘Diseases of
the circulatory system’ (see Figure 6). This analysis helps
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Fig. 4. Results of gene clustering validation route for luminal and basal breast cancer pathomechanisms predicted by Lazareva et al. [20]. (A) Empirical
P-values obtained by comparing the clustering’s Dunn index against random background. (B) Frequency of genes with non-empty sets of assigned
functional annotations.

Fig. 5. Results of reference-free disease set validation route for diseases linked to cGMP signaling by Langhauser et al. [17]. (A) Empirical P-values obtained
by comparing the mean Jaccard index of pairwise annotation sets against random background. (B) Distribution of number of related genes associated
with each ID.

Fig. 6. Blocks of chapter IX of the ICD-10 disease ontology obtained from
https://icd.who.int/browse10/2019/en/.

to assess to which extent chapter IX of the ICD-10 disease
ontology is mechanistically grounded, i.e. whether the
contained sub-blocks exhibit a stronger functional and
genetic intra- than inter-block coherence.

Figure 7 shows the results of our analysis. Interestingly,
we did not observed statistically significant results for
any of the three annotation types. Moreover, all of the
top 10 most frequently occuring associated genes are
present in most of the clusters, indicating that clusters’
genetic coherence is low. These findings confirm the
increasing awareness in the field that currently used
disease ontologies are problematic because they do not
mirror the underlying pathomechanisms [28].

In silico validation of gene subnetworks
KeyPathwayMineR [25] is a de novo network enrichment
tool to predict candidate pathomechanisms starting with
a list of DEGs. For the original publication, the authors
ran their tool on gene expression data from COVID-
19 patients and healthy controls and on a human PPI
network obtained from BioGRID to derive a candidate
host mechanism involved in COVID-19.

We used DIGEST’s reference-free gene subnetwork val-
idation route to assess the internal functional coherence
of this candidate mechanism. As shown in Figure 8, we
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Fig. 7. Results of disease clustering validation route for clustering induced by the blocks of ICD-10 chapter IX. (A) Empirical P-values obtained by
comparing the clustering’s Dunn index against random background. (B) Sankey plot linking each cluster to the top 10 most frequently occurring
associated genes.

did not obtain any significant P-values. In fact, even for
the GO.BP annotations which led to the smallest P-value,
the mean Jaccard index obtained for the predicted host
mechanism is < 0.05 (Figure 8b). This renders unlikely
that the subnetwork identified by Mechteridis et al. [25]
indeed represents one host pathway that is hijacked in
SARS-CoV-2 infection (it might still represent several,
mechanistically disjoint pathways).

To elucidate possible reasons that might explain
the non-significant results, we computed gene-level
significance contributions (see ‘Methods’ for details and
Figure 8c for the results obtained for the GO.MF-based
P-values). That is, we estimated to which extent the
individual genes contained in the COVID-19 subnetwork
discovered by KeyPathwayMineR positively or negatively
affect functional coherence. We then carried out gene set
enrichment analysis with g:Profiler on, respectively, the
10 genes with largest positive and largest negative effects
on coherence w. r. t. GO.MF annotations (supported in
DIGEST via direct links to g:Profiler from the results
view).

Interestingly, the 10 genes with largest positive effects
are enriched with annotations related to virus response
(see Supplementary Figure 1), while the 10 genes with
largest negative effects are enriched with more generic
annotations (see Supplementary Figure 2). A possible
explanation for the non-significant results is hence
that KeyPathwayMineR returns a large number of genes
with rather generic functions—possibly, because such
genes tend to constitute hubs in PPI networks. The
fact that the genes with large positive significance
contributions assume rather peripheral positions in the
subnetwork computed by KeyPathwayMineR provides
further evidence for this conjecture (see red nodes in
Figure 8c).

Scalability tests
To evaluate the scalability of DIGEST, we compared the
API query execution times for the reference-free gene

set validation route against functional gene set enrich-
ment queries against the APIs of PANTHER and g:Profiler
(results shown in Table 3; for details on the test setup,
see ‘Methods’). Since DIGEST is the only tool that runs
permutation tests, it is not surprising that it is clearly
the slowest of the three tools, with a mean query time
of around 13 min on gene sets of size 100 if run with
n = 1000 randomizations. To further improve usability
of the web interface, we provide a stable URL to the
results immediately after starting the in silico validation.
By saving this URL, the user does not have to wait for the
analysis to finish but can return to the results page at any
later point. Note that if run with n = 1 randomizations,
DIGEST’s query is around twice the query time of PAN-
THER. Setting the number of randomizations to n = 1
of course does not make sense for validation purposes,
but yields a fairer comparison against PANTHER and
g:Profiler, which do not run permutation tests.

Discussion
With DIGEST, we introduce a user-friendly tool for the
in silico validation of sets, clusterings or subnetworks of
genes and diseases. DIGEST supports the fully automated
computation of empirical P-values for hypotheses gen-
erated by computational systems medicine approaches
and hence helps to increase the likelihood that promising
hypotheses are further carried toward translation in pre-
clinical studies.

It is important to emphasize that the P-values
computed by DIGEST only quantify initial plausibility
of hypotheses generated by computational systems
medicine approaches. Whether these hypotheses are
ultimately valid and indeed correspond to disease
mechanisms can only be established via follow-up
pre-clinical and clinical studies. DIGEST is hence not
intended as a tool to substitute downstream wet-lab
validation, but as a tool that allows to further narrow
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Table 3. Mean execution times of API queries against PANTHER, g:Profiler and DIGEST for gene set queries with varying numbers of
genes (in seconds). DIGEST was run with n = 1000 and n = 1 randomizations and without estimation of significance contributions.

# Genes PANTHER g:Profiler DIGEST (n = 1000) DIGEST (n = 1)

10 79.51 33.89 701.06 149.77
50 80.91 33.67 762.03 148.41
100 88.68 33.98 806.83 148.13

Fig. 8. Results of reference-free gene subnetwork validation route for
candidate COVID-19 host mechanism predicted by Mechteridis et al. [25].
(A) Empirical P-values obtained by comparing the mean Jaccard index of
pairwise annotation sets against random background. (B) Mean GO.BP-
based Jaccard indices for input subnetwork (red vertical line) and gene
subnetworks generated by random background model. (C) Significance
contributions toward empirical P-values based on GO.MF annotations of
individual genes contained in the predicted COVID-19 host mechanism.

down the search space and focus on the most promising
hypotheses.

Moreover, the P-values returned by DIGEST have to
be interpreted carefully, since they are based on the

biological knowledge encoded in the KEGG, GO and Dis-
GeNET databases. The scrutinized hypotheses are hence
always validated against current knowledge, although
they typically aim at generating new insights into path-
omechanisms. Moreover, biological databases are known
to be heavily affected by study bias [19, 37], i.e. few
well-studied genes and diseases are overrepresented w.
r. t. the number of associations. In DIGEST, we address
this shortcoming using random background models that
preserve annotation set sizes. However, this only par-
tially solves the problem, because we cannot distinguish
between genes that are ‘true biological hubs’ and genes
that appear to be hubs due to study bias.

Finally, we would like to point out that it is possible
that DIGEST’s empirical P-values are inconsistent (e.g.
see results for the drug repurposing use case shown in
Figure 2). In such a situation, it is important that the user
carefully assesses which of the disease or gene annota-
tion databases used by DIGEST are indeed relevant for
their use case. For instance, in the above-mentioned drug
repurposing use case, one might decide to disregard the
non-significant KEGG-based P-value, since it has been
argued that KEGG pathways poorly reflect pathomech-
anisms [28].

Methods
Supported disease and gene namespaces
DIGEST validates sets, clusterings and subnetworks
of genes and diseases by comparing suitably defined
annotations sets obtained via queries against KEGG,
GO and DisGeNET (see subsequent sections for details).
Since KEGG, GO and DisGeNET require genes and
diseases to be given using specific namespaces (see
Supplementary Table 2), DIGEST queries NeDRex [36]
to automatically map the input provided by the user to
the required namespaces. The following input formats
are supported:

• Supported gene namespaces: Entrez [23], Ensembl
[12], gene symbols [40], UniProt IDs of encoded pro-
teins [3].

• Supported disease namespaces: Mondo [27], OMIM
[1], SNOMED CT [35], UMLS [5], ORPHA [31], MeSH [33],
DOID [38], ICD-10 (https://icd.who.int/browse10/2010/
en).

For all input types and validation routes, identifiers
that cannot be mapped to the required namespace are
ignored. Moreover, DIGEST ignores diseases and genes for
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which the annotation sets obtained from KEGG, GO or
DisGeNET are empty.

Statistical validation
Let X be any input of the supported input types specified
above. Moreover, let S(X) be a functional relevance score
for X and M be a background model which allows to
generate randomized input M(X), preserving some of the
properties of X. Assume that, w. r. t. S, larger means better.
We compute empirical P-values as

P := 1 + ∑n
i=1[S(X) ≤ S(M(X)i)]

n + 1
, (1)

where n is a user-specified parameter determining the P-
value resolution (defaulted to n := 1000 in DIGEST) and
[·] is the Iverson bracket (i.e. [true] := 1 and [false] :=
0). In the following text, we detail how the scores S and
the background models M are defined for the supported
input types. Note that separate P-values are computed
for each annotation type. For instance, for reference-free
gene set validation (see details below), DIGEST computes
empirical P-values based on KEGG pathways, GO cellular
components, GO molecular functions and GO biological
processes.

Scores and random background for gene sets
DIGEST supports the following three routes for in silico
validating a set of genes X:

(1) Validation against a reference disease set XR:
Assesses whether the functional relevance of X w. r.
t. diseases contained in XR is statistically significant.

(2) Validation against a reference gene set XR: Assesses
whether the functional similarity between genes
contained in X and XR is statistically significant.

(3) Reference-free validation: Assesses whether the
internal functional coherence of the genes con-
tained in X is statistically significant.

For the first two routes, sets AX and AR of functional
annotations are obtained for, respectively, the gene set
X and the reference XR or dR (see the next paragraph
for details). Subsequently, the functional relevance score
S(X) is computed either as the Jaccard index SJI(X) :=
JI(AX,AR) := |AX ∩ AR|/|AX ∪ AR| or as the overlap coef-
ficient SOC(X) := OC(AX,AR) := |AX ∩ AR|/ min{|AX|, |AR|},
depending on the choice of the user.

For the first validation route, AR is defined as union of
the set of KEGG pathways associated with diseases d ∈ XR

and AX is defined as the set of KEGG pathways associated
with genes g ∈ X (note that singleton disease sets XR = {d}
are allowed). For the second validation route, KEGG and
GO are used to obtain the set of functional annotations.
In either case, AX is defined as the set of annotations
associated with genes g ∈ X or, optionally, as the set of
annotations enriched with X as a whole. AR is defined
either as the set of annotations associated with genes

g ∈ XR or as the set of annotations enriched with XR as a
whole.

For the third, reference-free validation route, sets Ag of
functional annotations are obtained from GO and KEGG
for each gene g ∈ X independently. Depending on the
choice of the user, S(X) is then computed either as the
mean Jaccard index or as the mean overlap coefficient
over all pairs (Ag,Ag′) of annotation sets for g, g′ ∈ X with
g �= g′.

Two random background models are supported: The
first model draws genes uniformly without replacement
to compute fully randomized gene sets M(X) of size |X|.
The second model maintains some information from X
and constructs randomized gene sets M(X) where the
distribution of the contained genes’ annotation set sizes
(approximately) matches the distribution of the annota-
tion set sizes of the genes contained in X.

Scores and random background for gene
clusterings
DIGEST supports the following three scoring measures
for in silico validating gene clusterings X = C1, . . . , Cm:
The Dunn index SDI(X) := mini �=j δ(Ci, Cj)/ maxi �(Ci),
the Davies–Bouldin index SDBI(X) := ∑m

i=1[maxj �=i �(Ci) +
�(Cj)/δ(Ci, Cj)]/m and the silhouette score SSS(X) :=
∑

g∈⋃
Ci

[(a(g) − b(g))/ max{a(g), b(g)}]/n. �(Ci) denotes
the mean intra-cluster distance (i.e. the mean distance
between genes g, g′ ∈ Ci with g �= g′), δ(Ci, Cj) denotes
the mean inter-cluster distance (i.e. the mean distance
between genes g ∈ Ci and g′ ∈ Cj), a(g) denotes the mean
distance between a fixed gene g ∈ Ci and all other genes
in Ci, and b(g) is defined as b(g) := minj �=i b(g, Cj), where
b(g, Cj) denotes the mean distance between a fixed gene
g ∈ Ci and the genes contained in Cj.

The gene distances underlying the Dunn index, the
Davies–Bouldin index, and the silhouette score are
defined as 1 − JI(Ag,Ag′) or as 1 − OC(Ag,Ag′), depending
on whether the user wants to use the Jaccard index or the
overlap coefficient as underlying set similarity measure.
Ag and Ag′ are functional annotations for the genes g and
g′ obtained from GO and KEGG. The background model
randomly shuffles the assigned clusters between the
genes g ∈ ⋃m

i=1 Ci, preserving the number of clusters m
and the cluster size distribution.

Scores and random background for disease sets
DIGEST supports the following two routes for in silico
validating a set of diseases X:

(1) Validation against a reference gene set XR: Assesses
whether the functional coherence between the dis-
eases contained in X and the genes contained XR is
statistically significant.

(2) Validation against a reference disease set XR:
Assesses whether the genetic similarity between
diseases contained in X and XR is statistically
significant.
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(3) Reference-free validation: Assesses whether the
internal genetic coherence of the diseases contained
in X is statistically significant.

Functional relevance scores for the validation routes
are defined in almost exactly the same way as for the
validation routes for gene sets explained above. The only
difference is that, in addition to KEGG pathways, disease–
gene and disease–variant associations also obtained
from DisGeNET are used to construct the annotation
sets underlying the relevance scores, while no GO
annotations are employed.

As for gene sets, two random background models
are supported: (1) A fully randomized model which
uniformly samples genes sets M(X) of size |X|. (2) A
partially randomized model which samples genes sets
M(X) such that the distribution of the sizes of the
contained diseases’ annotation sets (approximately)
matches the distribution of annotation set sizes for X.

Scores and random background for disease
clusterings
DIGEST can also be used to in silico validate disease
clusterings X = C1, . . . , Cm. Like for gene clusterings, the
Dunn index, the Davies–Bouldin index or the silhouette
score can be used as clustering quality score S(X). The
underlying disease distances are defined in terms of
the Jaccard index or the overlap coefficient of disease
annotation sets Ad obtained from DisGeNET (genes or
variants) or KEGG. The background model is analogous
to the one for gene clusterings, i.e. diseases d ∈ ⋃m

i=1 Ci

are randomly shuffled across the m clusters under the
constraint that the cluster sizes are preserved.

Scores and random background for induced gene
or disease subnetworks
Finally, DIGEST can be used to in silico validate sub-
networks induced by a gene or disease set provided by
the user. More precisely, let G = (V, E) be a gene–gene
or disease–disease network and X ⊆ V be the user-
provided gene or disease set. Also the network G can be
provided by the user. If no network is provided, DIGEST
obtains G via queries to NeDRex as follows: If X is a
set of genes, DIGEST constructs G as a gene–gene net-
work based on experimentally validated PPIs obtained
from IID [15] (i.e. two genes are connected by an edge
if their encoded proteins have been shown to physically
interact). If X is a set of diseases, G is constructed as a
disease–disease network based on shared disease–gene
associations obtained from OMIM and DisGeNET (i.e. two
diseases are connected by an edge if they have at least
one associated gene in common).

To validate the subgraph G[X] induced by X, we com-
pute functional relevance scores S(X) in exactly the same
way as for gene and disease sets (see details above).
As background model, we compute gene or disease sets
M(X) such that the induced subgraph G[M(X)] matches
G[X] in terms of numbers and sizes of connected compo-

nents. For this, we first decompose G[X] into its connected
components (Xi)

k
i=1. Subsequently, we construct M(X) via

k random network expansions along the edges of G from
k randomly selected seed nodes vi ∈ V. We stop the ran-
dom expansion from node vi as soon as the constructed
connected component has reached the size |Xi|.

Significance contributions of individual genes or
diseases
DIGEST also allows to compute the contributions of
individual genes or diseases toward (non-)significance
(implemented as an optional feature since it increases
DIGEST’s runtime linearly w. r. t. the size of the input).
Let X be any input supported by DIGEST, x be a disease or
gene contained in X and X−x be a slightly modified input
where x has been removed. We quantify x’s significance
contribution as

�P(x) := P(X − x) − P(X), (2)

where P(X) and P(X − x) are the empirical P-values
obtained for the original and modified inputs, respec-
tively. If �P(x) > 0, x has a positive effect on X’s genetic
or functional coherence. If �P(x) < 0, the opposite is the
case.

Note that the gene- or disease-level significance con-
tributions are especially interesting for mixed-message
results. If the P-values are extreme (P(X) ≈ 0 or P(X) ≈ 1),
it may well happen that they are insensitive to removal of
individual genes or diseases from the input, which then
leads to �P(x) = 0 for many or even all genes or diseases
x contained in the input (see Supplementary Figure 3 for
such a situation).

Summary figures
DIGEST offers fully automated creation of plots to visu-
alize the results. Let T be all annotation types used for
computation of the relevance scores S(X). Moreover, for
each annotation type t ∈ T and each element x ∈ X,
let At

x be the set of annotations from t for x and �t
P(x)

be the significance contribution of a gene or disease x
on the w. r. t. the P-value based on annotation type t.
We provide plots to visualize the calculated empirical P-
values and plots to show the mappability of the input.
The following plots are generated to visualize the empir-
ical P-value visualization (see Supplementary Figure 3 for
an overview):

• A plot showing all calculated empirical P-values for
all annotation types t ∈ T (see Figure 2a, Figure 4a,
Figure 5a, Figure 7a and Figure 8a).

• A heatmap showing the significance contributions
�t

P(x) for all annotation types t ∈ T and the top 15
genes or diseases x contained in the input X with the
largest absolute significance contributions across all
annotation types (maxx maxt |�t

P(x)|, see Supplemen-
tary Figure 3b).
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• For every annotation type t ∈ T: Heatmaps showing
the significance contributions �t′

P (x) for all annota-
tion types t′ ∈ T for (i) the top 10 genes or diseases
with the largest positive significance contributions w.
r. t. t (maxx �t

P(x), see Supplementary Figure 3c), and
(ii) the top 10 genes or diseases with the largest neg-
ative significance contributions w. r. t. t (minx �t

P(x),
see Supplementary Figure 3d).

• For every annotation type t ∈ T if X is the node set of
an induced subnetwork: A visualization of the sub-
network G[X] where the individual genes’ or diseases’
significance contributions �t

P(x) are encoded as node
colors (see Figure 8c).

• For every annotation type t ∈ T: A plot showing the
relevance score S(X), the distribution of all relevance
scores S(M(X)) for the background model, as well
as the resulting empirical P-value (see Figure 2b and
Figure 8b).

The following plots are generated to visualize mappa-
bility (see Supplementary Figure 4 for an overview):

• A plot showing the frequency of elements x ∈ X
with non-empty annotation sets (At

x �= ∅) for all
annotation types t ∈ T (see Figure 4b).

• For every annotation type t ∈ T: A plot showing
the distribution of annotation set sizes |At

x| for the
elements x ∈ X (see Figure 5b).

• For every annotation type t ∈ T: A Sankey plot linking
the elements x ∈ X to the top 10 most frequently
occurring annotation terms of type t. For cluster-
ings, term occurrences are normalized by the sizes
of the clusters they are appearing in to avoid over-
representation of larger clusters (see Figure 7b).

Setup of scalability tests
To evaluate the scalability of DIGEST in comparison to
existing tools, we ran queries with identical gene sets
against the APIs of DIGEST, PANTHER and g:Profiler
(DAVID and WebGestalt were excluded due to lack of APIs
that allow query execution time measurements). For this,
we generated 3 × 10 random gene sets of sizes 10, 50 and
100, respectively. We then ran PANTHER’s ‘Functional
enrichment test’, g:Profiler’s ‘g:GOSt’ analysis (performs
functional enrichment analysis) and DIGEST’s reference-
free gene set validation route and measured the query
execution times. The number of randomizations used for
DIGEST’s permutation tests was set to n = 1000 (default
in web interface) and n = 1 (yields fairer comparison
against tools that do not run permutation tests).

Implementation of Python package
The backend is implemented in Python 3 and pulls the
disease ID mappings from the API of NeDRex, the dis-
ease attribute mappings (disease-associated genes and
variants) from DisGeNET and the shared KEGG pathways
from the API of KEGG. Gene set enrichment is computed
via GSEApy’s Enrichr module [16, 39]. The remaining

mappings are obtained via the biothings_client pack-
age (https://github.com/biothings/biothings_client.py). A
YAML file is provided to easily set up an environment
with all dependencies.

Implementation of web interface and REST API
The web interface and REST API components are
deployed using Docker and separated into four con-
tainers: (1) A backend service running a Django REST
framework for request handling and execution of
DIGEST’s Python package. (2) A Redis service for task
queuing and execution of incoming validation requests.
(3) A PostgreSQL database to store and manage validation
results. (4) A frontend implemented in vue.js, providing a
graphical configuration option for execution of DIGEST,
as well as the API documentation.

The REST API provides programmatic access to
DIGEST’s validation routes. Requests receive a unique
task ID, used to check the execution status and request
results. Moreover, set-up files for DIGEST’s Python
package can be obtained via the API, which improve
the initialization time by loading the latest pre-built
scoring matrices and mapping files from the server.
Requests submitted through the web interface use the
unique task ID to generate a permanently accessibly
URL for the result page, allowing users to save it and
return to the page at a later point. Besides the obtained
empirical P-values, the result page presents the input
data, the selected parameter configuration, as well as
summary figures. If the user desires to compute gene- or
disease-level significance contributions, the necessary
computations are scheduled during idle times of the
server in order not to block faster jobs. The current status
of the computations can be checked at any time using the
unique task URL. Moreover, if the user provides an email
address, DIGEST notifies them once all computations
have been carried out.

Key Points

• Solid prior evidence is necessary to carry hypothe-
ses generated by computational systems medicine
approaches toward translation.

• Existing validation tools only support limited input types
and have limited statistical analysis capacities.

• DIGEST overcomes this limitation by computing empir-
ical P-values quantifying functional and genetic coher-
ence.

Availability
DIGEST’s web interface and REST API are available
at https://digest-validation.net and https://api.digest-
validation.net, respectively. The Python package is avail-
able at https://pypi.org/project/biodigest. The source
codes of the Python package, the web interface and
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the REST API are freely available at https://github.com/
bionetslab/digest, https://github.com/bionetslab/digest-
web and https://github.com/bionetslab/digest-api, under
the terms of the GNU General Public License, Version 3.
A Jupyter notebook for getting familiar with DIGEST’s
Python package and reproducing the results reported in
this paper is available at https://github.com/bionetslab/
digest-tutorial. To further increase reproducibility, we
generated an AIMe report [24], which is available at
https://aime.report/mS7V2J.

Supplementary data
Supplementary data are available online at Briefings in
Bioinformatics.
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